Distinct Septin Heteropolymers Co-Exist during Multicellular Development in the Filamentous Fungus Aspergillus nidulans
نویسندگان
چکیده
Septins are important components of the cytoskeleton that are highly conserved in eukaryotes and play major roles in cytokinesis, patterning, and many developmental processes. Septins form heteropolymers which assemble into higher-order structures including rings, filaments, and gauzes. In contrast to actin filaments and microtubules, the molecular mechanism by which septins assemble is not well-understood. Here, we report that in the filamentous fungus Aspergillus nidulans, four core septins form heteropolymeric complexes. AspE, a fifth septin lacking in unicellular yeasts, interacts with only one of the core septins, and only during multicellular growth. AspE is required for proper localization of three of the core septins, and requires this same subset of core septins for its own unique cortical localization. The ΔaspE mutant lacks developmentally-specific septin higher-order structures and shows reduced spore production and slow growth with low temperatures and osmotic stress. Our results show that at least two distinct septin heteropolymer populations co-exist in A. nidulans, and that while AspE is not a subunit of either heteropolymer, it is required for assembly of septin higher-order structures found in multicellular development.
منابع مشابه
A Septin from the Filamentous Fungus A. nidulans Induces Atypical Pseudohyphae in the Budding Yeast S. cerevisiae
BACKGROUND Septins, novel cytoskeletal proteins, form rings at the bases of emerging round buds in yeasts and at the bases of emerging elongated hyphal initials in filamentous fungi. METHODOLOGY/PRINCIPAL FINDINGS When introduced into the yeast Saccharomyces cerevisiae, the septin AspC from the filamentous fungus Aspergillus nidulans induced highly elongated atypical pseudohyphae and spore-pr...
متن کاملThe septin AspB in Aspergillus nidulans forms bars and filaments and plays roles in growth emergence and conidiation.
In yeast, septins form rings at the mother-bud neck and function as diffusion barriers. In animals, septins form filaments that can colocalize with other cytoskeletal elements. In the filamentous fungus Aspergillus nidulans there are five septin genes, aspA (an ortholog of Saccharomyces cerevisiae CDC11), aspB (an ortholog of S. cerevisiae CDC3), aspC (an ortholog of S. cerevisiae CDC12), aspD ...
متن کاملCharacterization of the Aspergillus nidulans septin (asp) gene family.
Members of the septin gene family are involved in cytokinesis and the organization of new growth in organisms as diverse as yeast, fruit fly, worm, mouse, and human. Five septin genes have been cloned and sequenced from the model filamentous fungus A. nidulans. As expected, the A. nidulans septins contain the highly conserved GTP binding and coiled-coil domains seen in other septins. On the bas...
متن کاملAsexual sporulation in Aspergillus nidulans.
The formation of mitotically derived spores, called conidia, is a common reproductive mode in filamentous fungi, particularly among the large fungal class Ascomycetes. Asexual sporulation strategies are nearly as varied as fungal species; however, the formation of conidiophores, specialized multicellular reproductive structures, by the filamentous fungus Aspergillus nidulans has emerged as the ...
متن کاملDistinct ceramide synthases regulate polarized growth in the filamentous fungus Aspergillus nidulans.
In filamentous fungi, the stabilization of a polarity axis is likely to be a pivotal event underlying the emergence of a germ tube from a germinating spore. Recent results implicate the polarisome in this process and also suggest that it requires localized membrane organization. Here, we employ a chemical genetic approach to demonstrate that ceramide synthesis is necessary for the formation of ...
متن کامل